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Abstract. The fracton or spectral dimension, ds, of two Sutherland type ‘ghost’ aggregation 
fractals is obtained (for high space dimension) by a scaling argument. If, as seems probable, 
these fractals are homogeneous, the results ( d ,  = 2 In 2/ln 3 and d ,  = 4 / ( f i  - I ) )  support 
recent conjectures that d,  is close to $ for all homogeneous fractals. However, they are nor 
consistent with the stronger conjecture that d, is exacfiy $ for all such fractals. 

Alexander and Orbach (1982) have observed that the fracton or spectral dimension, 
d,, of the incipient infinite percolation cluster is independent of d, the space 
dimension, and approximately equal to $. This observation has been much discussed 
in the recent literature (Rammal and Toulouse 1983, Leyvraz and Stanley 1983, Meakin 
and Stanley 1983). It has been conjectured (with the support of numerical and analytical 
work on percolation clusters, lattice animals, and diffusion-limited aggregates) that 
d,  = $, either approximately or exactly, for all homogeneous fractals (Leyvraz and 
Stanley 1983, Pandey and Stauffer 1983, Havlin and Ben-Avraham 1983, Gould and 
Kohin 1984, Sahimi and Jerauld 1984, Wilke et al 1984, Meakin and Stanley 1983). 

There is no really compdling reason to suppose that the relation is exact; however, 
the consequences would be profound if this were the case. So far as I know, no exactly 
calculable counterexample has been given. Any discussion remains tentative due to 
the absence (at present) of any obviously unique definition of homogeneity; one possible 
definition is proposed by Leyvraz and Stanley (1983). The qualitative feature sought 
is an absence of ‘bottlenecks’ (either systematic or random) blocking the path of a 
random walker on the cluster. 

In this letter I argue that d,  = $ is probably not exact for all homogeneous fractals. 
This view is supported by consideration of the Sutherland ‘ghost’ or ‘maximum chain’ 
cluster (Sutherland 1967, 1970, Ball 1984, R C Ball and T A Witten, to be published). 
In high d, this type of fractal seems to be homogeneous; but simple arguments show 
it to have d,  = 2 In 2/ln 3 = 1.26. However, this value is sufficiently close to 4 to support 
the weaker form of the conjecture, that d , = $ .  

The fractal arises in a hierarchical model of aggregation (the ‘maximum chain’ 
model of Sutherland (1970)). One starts with a set of point seeds (zeroth generation 
clusters). The nth generation of clusters is obtained by pairing the clusters of the 
previous generation; each pair is joined by a single bond or ‘random weld’. All possible 
welds are taken with equal weight. The fractal is obtained in the limit n + W. Clearly, 
this procedure generates only trees. 

It has been shown (R C Ball and T A Witten, to be published) that whilst after 
each iteration the mass of a cluster has doubled, its radius of gyration has increased 
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by a factor of (3/2)1’2. Hence df, the fractal dimension (Mandelbrot 1982), is given 
exactly by 

d f=  2 In 2/ln($) = 3.4. (1) 

In addition, any pair of sites (Rt, R,) on the cluster is connected by a unique sequence 
of N,, bonds, which is a random walk in space. Hence 

((RI - R,I2) - Nu. (2) 

Now consider such a cluster embedded in a space of sufficient dimension that there 
are no double points (i.e. d > 2df; Mandelbrot 1982). This means that the electrical 
resistance, a,,, between points i and j is given simply by 

‘I/ = NtJ* (3) 

Combining (2) and (3), we see that the resistance R(R) between two points on the 
cluster separated by a distance R in space must scale as 

(R(R)) - R 2 .  

It is possible to relate the resistance properties of the cluster to its spectral dimension 
by a scaling argument. Define G(R,  U ) ,  the average diffusion propagator (at frequency 
U ) ,  between points on the fractal separated by R in space. This should have the scaling 
form 

G(R, w ) -  R” exP[-R/t(O)l 

where the diffusion length [ ( w ) - w - ” ~ - .  The RMS displacement r ( t )  of a diffusant 
particle at time t is easily confirmed to obey rds - 1, in accordance with the usual 
definition of d,. (Note that d, is defined by d, = 2df/d,.) 

By considering the generalised Laplace equation for a fractal object (Alexander 
and Orbach 1982), one can show that G(R, 0)X (R(R)), and hence that x = 2. However, 
the conservation of total probability requires I G(R, 0) e’“ dDR dw = q t ) .  

This imposes the (Einstein-type) scaling relation 

d,= d f + x ;  (4) 

hence d, 2df/d, = 2df/(df+2). 
Thus, for all d > 2df= 6.8, one has by (l), d, = 2 In 2/ln 3 = 1.262. Since for these 

d values the cluster is a random tree without double points, it seems unlikely that it 
can be inhomogeneous in the sense of the definition proposed by Leyvraz and Stanley 
(1 983)-i.e. containing exceptionally dense boundary sets that completely surround 
internal pieces of the fractal (thus hindering diffusion). Certainly it is hard to see how 
a tree can contain ‘bottlenecks’ in the usual intuitive sense. Thus it seems plausible, 
on physical grounds, that the cluster is indeed homogeneous. If so, its existence means 
that d, does not equal $ exactly for all homogeneous fractals. The value of d,- 1.26 
is, however, sufficiently close to $ to support the weaker conjecture of approximate 
equality. This is itself of interest, because the number of fractals for which accurate 
values of d, are known is still quite small. 

This number can be increased further by considering the ‘polydisperse’ Sutherland 
aggregate (Ball 1984). The scaling argument given above can be generalised to this 
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case. The fractal is generated iteratively from a set of point seeds by taking one pair 
of clusters at random, welding them, and returning the resultant cluster to the set- The 
final structure has the resistance exponent x = 2  as before, but now d f = 4 / ( J 1 7 - 3 ) ,  
and hence, for d > 2 d f ,  d ,  = 4 / ( f i  - I )  = 1.28. 

The value of d,  for the ‘monodisperse’ ghost cluster can be interpreted by noting 
that the ensemble actually constitutes a subset of lattice animals of anomalously open 
structure (R C Ball and T A Witten, to be published). By selecting this subset, the 
value of d r  (which = 4 for animals at high d )  is decreased whilst retaining the same 
resistance exponent, x = 2. Hence, by (4), the spectral dimension is changed from the 
animals ( d  > 8) value of $. This suggests that there may be some homogeneous fractals 
for which one can vary d, continuously by altering d f  at constant x or vice versa. For 
a small enough change, one does not expect the homogeneity of the fractal to be lost. 
It remains to be seen whether an explicit example of this type can be found; since 
both fractals considered above have d, < !, it would be interesting to see whether values 
of d , > :  can be obtained in this way. 

I am grateful to Dr Robin Ball for introducing me to this subject and to him and Dr 
Ras Pandey for useful disussions. The receipt of a CASE award from the SERC and 
Esso Petroleum Ltd is gratefully acknowledged. 
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